A trust region method for the optimization of noisy functions

نویسنده

  • C. Elster
چکیده

The optimization of noisy or not exactly known functions is a common problem occuring in various applications as for instance in the task of experimental optimization. The traditional tool for the treatment of such problems is the method of Nelder-Mead (NM). In this paper an alternative method based on a trust region approach (TR) is ooered and compared to Nelder-Mead. On the standard collection of test functions for unconstrained optimization by Mor e et al. 6], TR performs substantially more robust than NM. If performance is measured by the number of function evaluations, TR is on the average twice as fast as NM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

روش ناحیه اعتماد مخروطی برای مینیمم‌سازی تابع پیوسته ‌لیپ‌شیتز موضعی

In this paper, we present a trust region method for unconstrained optimization problems with locally Lipschitz functions. For this idea, at first, a smoothing conic model sub-problem is introduced for the objective function, by the approximation of steepest descent method. Next, for solving the conic sub-problem, we presented the modified convenient curvilinear search method and equipped it wit...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993